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Abs t rac t  

From the point of view that the charge and mass of an electron is of dynamical origin 
and quantization of charge in units of e is related to the space-time quantization as 
developed in an earlier paper, we here show that it is possible to consider that the 
internal space within the elementary domain of the quantized space-time world is not 
governed by Lorentz invariance. This helps us to develop a consistent theory of non- 
local fields for extended particles where the infinite mass degeneracy is avoided. More- 
over, this ensures the convergence of nonlocal field theories and suggests that  massless 
particles like photons and neutrinos, though they may be taken to be of extended 
structure, will appear only as point particles in the physical world. In this picture, 
Lorentz invariance appears to be a consequence of the distribution of  matter.and 
energy in the Universe, and this may be taken to be another interpretation of Mach's 
principle. 

1. In t roduc t ion  

In a recent paper (Bandyopadhyay, 1973a-hereafter referred to as I) we 
have argued that the quantization of charge in units of e can be taken to be 
a consequence of the space-time quantization when charge is considered to 
be of dynamical origin. In fact, we have shown in I that the charge and mass 
of an electron (as well as of a muon) can be taken to occur as a result of n 
photon-neutrino weak interactions, when photons and neutrinos are 
represented as nonlocal fields and n is given by the relation e -~ ng, g being 
the photon-neutrino weak coupling constant (g ~- 10 -1° e) (Bandyopadhyay, 
1968). In this model electron and muon are depicted as (YES) and (pus), 
respectively, where S represents the system of photons interacting weakly 
at n space-time points with the extended structure of a two-component 
neutrino. The two other components corresponding to the positive and 
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negative energy states are formed when the form factor associated with the 
interaction changes its sign, implying that particles and antiparticles are 
mirror reflections of each other (Bandyopadhyay, 1973b). This procedure 
helps us to unify weak and electromagnetic interactions and the 
accompanied violation of symmetry generates the photon as a Goldstone 
boson (Bandyopadhyay, 1973a). I f  we take that the charge of a hadron is 
also due to the presence of a lepton in its structure (Bandyopadhyay, 1975), 
then the charge spectrum of all hadrons can be interpreted on the basis of  
this concept of dynamical origin of charge. 

In this picture, it is possible to show that the quantization of charge in 
units of  e is related to the quantization of space-time, where each quantized 
space-time domain is determined by the region accommodating the specific 
n number of  weak interactions involving extended structures of n photons 
and one neutrino, also considered to be of extended structure. However, as 
we know, it is not yet properly understood how massless particles with 
extended structures can be described. Moreover, as Yukawa has pointed out, 
there are difficulties due to mass degeneracy in the simple model of non- 
local fields (Yukawa, 1965, 1973). In this context it is worthwhile to 
mention that a model of leptons has been constructed out of  n photons 
weakly interacting with the neutrino in the frame work of nonlocal field 
theory (Bandyopadhyay, 1973a). This model suggests a preferential 
direction in the space within the fundamental domain, i.e., the internal 
space should be such as to violate the Lorentz invariance. Taking this into 
consideration we shall here show that the nonlocal fields representing the 
extended particles can be described in a consistent way. 

2. Nonlocal Field Theory and the Infinite Degeneracy of  Mass States 

The concept of nonlocal field was first introduced by Yukawa (1950) to 
incorporate new degrees of freedom that might help us to understand the 
internal quantum numbers of hadrons. However, the goal could not be 
successfully achieved; besides, certain inconsistencies like infinite degeneracy 
of mass states appear in the simple model of nonlocal fields. In fact, in the 
description of nonlocal fields it is generally considered that the field is a 
function of  two points and it can be represented by a matrix (X~ I ~ [ X~). 
The principle of  reciprocity is understood as a symmetry of natural laws with 
respect to the commutators [Pu, ~k] and [xg, ~ ] .  Alternatively, ~k can be 
regarded as a function ~(x , r ) of  external coordinates X. = (x'.o + x,',)/2 
and internal coordinates rg = xu - xu. For a scalar field, the free field 
equation can be written as 

F , r u, ~(X., ru) = 0 (2.1) 

Assuming that F can. be factorized in terms of a d'Alembertian operator for 
the external coordinates and an operator F(r) depending only on the internal 
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coordinates, we can write 

+ F (r) r u ¢ = 0 (2.2) 
3 X u a X ~  ru, brubru. 

In this case, q~ can be solved in the product form 

c~ = U(X)X(r)  (2.3) 

where U(X) and X(r)  must satisfy the equations 

3 X - ~ X  u I~ U(X) = ( t  :(r) - I~)X(r) : 0 (2.4) 

Yukawa (1965, 1973) has considered the case of the harmonic oscillator. In 
the case of the four-dimensional oscillator model, the operator F is of the 
form 

- - -  + - -  rur (2.5) F= OX~X,, + ~ Or~,~ru ~4 

Now it is noted that for the solution of the equation 

( ~ r )  _ la)X(r) = 0 (2.6) 

the eigenvalues/~ are not positive definite. If  we assign to each mode of 
vibration four quantum numbers nl in the direction of X, n2 in the direction 
of Y, n3 in the direction of Z, and another vibrational quantum number no 
in the time direction, then the eigenvalue of F(r) is proportional to 
nl + n2 + n3 - no. Obviously, this leads to the degeneracy of the eigen- 
values. For example, if we take the case tl = 0, then there are an infinite 
number of different combinations of  nl,  n2, n3, and no. Thus, if we accept 
this formalism, there is an infinite number of different types of particles, 
all of them having the same mass. 

Yukawa (1965, 1973) has pointed out that there may be two ways to 
obviate these difficulties: (i) to consider a nonunitary representation of the 
Lorentz group, and (ii) to introduce the coupling between external and 
internal motions. Though by adoption of (ii) the difficulties of infinite 
degeneracy can be removed, the picture becomes far from simple. However, 
in this context Pals (t953) emphatically remarked that there is no a priori 
reason at all why the internal space should be governed by the Lorentz 
group, and if we demand that the internal space is not governed by the 
Lorentz group, then the difficulties related to the infinite mass degeneracy 
problem are removed. But the idea that the internal space does not obey 
this Lorentz symmetry is not favored for two reasons. Firstly, it was 
Yukawa's intention to correlate the internal quantum numbers of hadrons 
like isospin, strangeness and baryon number with the degrees of freedom 
connected with the internal space. Secondly, if we transform Yukawa's 
nonlocal field theory to the local field theory with nonlocal interaction, the 
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form factor of the latter theory becomes connected with the variables of 
the internal space. So, if the internal space variables do not obey Lorentz 
symmetry, the form factors of the nonlocal interaction theory will have no 
relativistic invariance. 

Here we point out that the description of electron (and muon) on the basis 
of the dynamical origin of charge and mass and the necessary requirement of 
space-time quantization can indeed accommodate the idea that the internal 
space within the quantized domain is not governed by Lorentz symmetry 
(Bandyopadhyay, 1974). According to this idea of space-time quantization, 
each quantized domain becomes the seat of an electron (as well as muon) 
and within this domain no measurement is possible. When the domain is 
filled up by the n number of photons interacting at different space-time 
points with the extended structure of a neutrino Ve(V~), a massive and 
charged particle like an electron (muon) is formed and we get into the world 
of Lorentz symmetry. For details, let us recapitulate the previous calculations 
as presented in I. 

Let us consider the two-component spinor wave function ~(X, r), where X 
and r are external and internal space-time variables. It is considered that 
t)(X, r) satisfies the relation 

~(x) = f d4rt~(X, r) (2.7) 

It is further contended that the nonlocal spinor $(X, r) obeys the Dirac 
equation in terms of the variable X 

(@ O-~ + M) ~(X, r) = O (2.8) 

The Spinor current is expressed as 

C#(x) = ~ d4r d4S~(X, r)3'ts~(X, s) (2.9) 

Now assuming that the electromagnetic field quantity Au(Y, t) also satisfies 
a similar relation 

Au(Y ) = ~ d4tAu(X, t) (2.10) 

we take n photon fields at different space-time points in the external space as 
follows: 

Au(Y- ½el)  + Au(Y + ½el) + Au(Y-  ½e2 ) + Au(Y + ½e2) 

+. . .  + Au(y_ 1era ) + Au(Y + ½em) (2.11) 

From this, we see that when e ~ 0, the expression just reduces to the single 
point potential given by nAu(Y) when n = 2m. Thus the interaction Lagrangian 
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for n photon weak interactions with the spinor takes the form 

m m 

Li=ig ~ Cv(X)Au(Y-  ½ei) + ~ Cu(X)Au(Y +½ei) 
i=l  i=l  

= ig ~ ~ d4r d4s d4t[~(X, r)ru$(X, S)Av(Y, t) 
i=1 

+ 01 (2.12) 

where Yi = Y -  ½ ei, Yi = Y + ½ei, and g is the dimensionless weak coupling 
constant, which is taken to have the value g = 10 - t °  e (Bandyopadhyay~ 
1968). 

Now taking m such that e/2m = g, the weak coupling constant, we note 
that the system of interactions (2.12) in the limit e -> 0 just reduces to the 
formal dectromagnetic coupling 

ie f d4r d4s d4t~(X, r)rU~(X, s)Au(Y, t) (2.13) 

Thus in the limit e + 0, n photon weak interactions can be considered to be 
"equivalent" to the proper electromagnetic interaction (2.13), and by this a 
geometrical description of e in terms o fg  is obtained. 

To show that the coupling constant e obtained in such a manner actually 
represents the "charge," we have shown in I that the equation (2.13) can give 
rise to a less symmetric solution that generates the "electromagnetic" inter- 
action from a system of n photon "weak" interactions at different space-time 
points. This violation of symmetry occurs owing to the fact that (1) the 
interaction involving nonlocat fields such as equation (2.13) is equivalent to 
an interaction involving local fields with form factor which introduces a cut- 
off giving mass to the bare spinor and (2) the positive and negative sign of 
the form factor is found to correspond to the positive and negative energy 
states and thus a four-component spinor can be formed from a bare two- 
component spinor. The generation of mass through the interaction violates 
the summetry corresponding to the invariance under the transformation 

-~e ic~y~ ~ inherent in the original system of "weak" interactions involving 
the bare two-component spinor as given by equation (2.12), and thus, in this 
scheme, electromagnetic interaction is generated through the spontaneous 
breakdown of symmetry and the photon appears as a Goldstone boson. 

It is to be noted here that the number n of the system of weak interactions 
in equation (2.12) bears a very crucial sense: n must be a unique number, 
otherwise we could get any amount of charge and mass of a lepton formed 
in this manner. Since we know that all charges in nature occur in units of e 
(provided we assume that there are no fractionally charged particles like 
quarks), n must be specified by the quantity e/g, where g is the photon- 
neutrino weak coupling constant. Again in Bandyopadhyay (1974) we have 
argued that this number n can be specified if we assume that space-time in 
nature is quantized such that the whole "space-time continuum" is considered 
as a collection of "elementary space-time domains." Each such domain is 
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specified by the fact that no physical measurement is possible within it. This 
elementary domain can be considered to be the "seat" of an elementary 
particle like an electron or a muon. The number n of interactions as specified 
by the ratio e/g is determined by the dimension of this domain such that no 
more interacting photons in the system of weak interactions at different 
space-time points with an extended structure of a neutrino as given by 
equation (2.12) can be accommodated within this quantized domain. Thus 
we can get the unique charge e for a lepton. This concept of space-time 
quantization requires the introduction of a fundamental length lo in nature 
as a measure of the linear dimension of the elementary domain. 

From the above analysis, we now show that if we assume that the internal 
space within the quantized domain is not governed by Lorentz symmetry, 
we do not face any difficulty as to the relativistic invariance of the form 
factor involved in the electromagnetic interaction of a charged lepton. To 
this end, let us first consider a single photon-neutrino weak interaction where 
both photons and neutrinos are taken to have extended structures. In non- 
local field theory, the interaction can be depicted as 

LI = ig f d4r d4s d4 tf(X, r)7u ~(X, s)Atz(Y, t) (2.14) 

where X and Y are external variables and r, s, t are internal variables. When 
this interaction is transformed into the nonlocal interaction theory involving 
local fields with a form factor, the interaction (2.t4) reduces to the form 

L I = ig ~ d4X1 d4X2 d4Xa~(X1)ruf(X2)F(X1, X 2, X3)Au(X3) (2.15) 

where the form factor F(X1, X:, X3) is related to the internal space variables 
through a relation of the form 

F(XI'X2'Xa)=gX(XI - X3)6 [ (XI + Xa) X2 (2.16) 

From our above analysis, we note that the form factor depends on the complex 
conjugate of the internal eigenfunction and the internal space variable is here 
characterized by the relation r < to. So, if Lorentz invariance is taken to be 
violated within the region characterized by the domain r < 1o, the form 
factor F(XI, X2, X3) will also not observe relativistic invariance. However, 
since no measurement is possible within the quantized domain in the physical 
world, it does not matter if the form factor F(X 1, X 2, X3) violates relativistic 
invariance. Also we observe that although the massless particles fike photons 
and neutrinos are taken to be of extended structure, the dimension of these 
extended particles will not be observable since the linear dimension of these 
particles will be less than 10. Thus we see that although the massless particles 
like photons and neutrinos are taken to be of  extended structures in the 
physical world they will only behave as point particles, tn fact, only when 
the quantized domain is filled up by n interacting photons does the dimension 
of the region covering all these interactions become l = lo. In this case, the 
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interaction (2.13) involving nontocal fields, when transformed into the non- 
local interaction theory involving form factor, reduces to the form 

r = ie.I d4X1 d4X2 d4X3 ~(X1 )%~ ~(X2)F(XI - x3 ,  X2 - X3)A ~t (X3) (2.17) L 

and the form factor in equation (2.17) depends on the internal eigenfunctions 
through a relation of the form 

F=gX(X1 - X3) 6 [(X 1 + X3)/2 - X2] 

and the linear dimensions of the internal space here becomes identical with 
lo. Thus the relativistic invariance for the form factor F(X1, )(2, X3) is fully 
maintained when the quantized domain becomes the seat of an electron (or a 
muon). 

Now we make some remarks about Yukawa's notion that the internal 
quantum numbers of hadrons can be related with the degrees of freedom 
associated with the internal space of the extended structure of hadrons. In 
fact, if this is the situation, then we are not justified in assuming that the 
internal space is not governed by the Lorentz group. However, it is now 
almost certain that hadrons are all composite particles. In a recent paper 
(Bandyopadhyay, 1975) we have shown that the internal quantum numbers 
like isospin, strangeness, and baryon number can be interpreted from the 
very configuration of hadrons when hadrons are taken to be composed of 
three spin-~ particles (which may be identified with/l +, ~/u, and/l- respectively) 
and the internal motion is quantized in units of ½.h instead of h in such a way 
that the third components +½ and -~  represent particles and antiparticles or 
vice versa. Thus if we take this picture of hadrons, it is not necessary to take 
into account the internal degrees of freedom of an extended particle to 
account for the internal quantum number. 

3. Nonlocal Field Theory and the Problem o f  Convergence 

In this section, we would like to point out that the concept of space-time 
quantization helps us to ensure convergence in nonlocal interaction theories. 
In fact, the nonlocal interaction theory was first proposed to avoid the 
divergence difficulties encountered in local field theory. However, Btoch 
(1952), Kristensen and Moeller (1952), Moeller (1953), and Pierles (1953) 
have shown that to ensure convergence we must impose certain constraints 
on the nature of the form factor and this may lead to the violation of causality. 
In fact, as Moller (1953) has shown, to obtain a convergent expression for the 
matrix element of the field variables ~(x), (a[~(x) lb) it is necessary to 
assume that the factorg(h, /3)  = 0 for ll • 0 (space-like g) where g = Pb - Pa, 
13 ----p - pb (Bloch's condition). Since on account of the reality requirement 
g(ll, 13) = g*(-13, -/1), g must also be zero for space-like/3. But, as is evident, 
a form factor satisfying Bloch's condition is not reconcilable with the principle 
of correspondence and causality in the large. The principle of correspondence 
suggests that if the field functions only contain waves of wavelength large 
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compared with a certain constant ~ of the dimension of a length, the form 
factor is effectively a 5 function like in the local field theory. That is, the 
form factor depends on the constant ~ in such a way that F(~, xl ,  x2, xa) 
in the limit X-+ 0, goes over into the corresponding quantity of the total 
theory. That is, in the momentum space, it would read 

lim g(ll, /3) = 1 
h ~ 0  

But the Bloch's condition for convergence requires that 

lira g(h,  la) = 1 for time-like Ii, la, ll + la 
h-->O 

= 0 for space-like 11, 13, h q-/3 

This would also probably imply the violation of the "causality condition in 
the large" which states that if ~2 and ~2' are two deafly separated domains 
in space-time, whose linear dimensions are large compared with ~., then any 
signal transmitted from ~2 to ~2' should take place with velocity smaller than 
c, and further the absorption process should occur later than the emission 
process. 

From our present analysis, we here note that the principle of correspond- 
ence has a different meaning if the space-time is quantized. For then the 
limit ~ --> 0 becomes meaningless as lo is the minimum linear dimensions we 
can achieve. In this picture, we find that if the field functions only contain 
waves of wavelength very large compared with 1o, the interaction will "appear" 
as a local one and the form factor can "approximately" be taken to be unity. 
Moreover, Bloch's conditions are automatically satisfied for quantized space- 
time, because then we can define a unit time-like vector N# and any energy- 
momentum vector Ptz can be replaced by the universal vector N~. It may be 
noted that the introduction of this vector Np is equivalent to going back to 
the absolute space and time. But we do not face any contradiction since our 
space-time is quantized, and within a quantized space-time domain we have 
already abandoned the requirement of Lorentz invariance. 

4. Discussion 

From the above arguments, we find that the main objections that were 
raised for the violation of Lorentz symmetry of the internal space can be 
avoided when the concepts of space-time quantization and dynamical origin 
of charge and mass of an electron are introduced. Also, as mentioned above, 
the introduction of Lorentz noninvariance in the internal space helps us to 
avoid the infinite degeneracies associated with nonlocal fields for extended 
particles. Again, we find that massless particles like photons and neutrinos, 
although they may be taken to be of  extended structure, in the physical 
world will only appear as point particles since the dimension of these particles 
will be less than that of the quantized domain. 

Finally, it may be mentioned that Tati (1960) and Bloldaintzev (1964) 
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also introduced a unit time-like vector N~ assuming that  the space-time world 
as a whole has a preferred direction due to the distr ibution of  mat ter  and 
energy and in this way appealed to  Mach's principle. In the present case, 
although we have assumed that Lorentz symmetry is violated within the 
quantized domain, this comes into being when the primary unit  of  charge 
and mass is formed and the elementary domain becomes the seat of  an 
electron (or muon). Thus in our present picture, Lorentz symmetry may be 
considered to be a consequence of  the distr ibution of  matter  and energy in 
the universe. This may be taken to be another interpretat ion of  the famous 
Mach principle. 
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